One might say that physicists study the symmetry of nature, while mathematicians study the nature of symmetry.

1/

@GWOMaths Observing symmetry in nature, such as noting the similarity between the symmetries of a snowflake and a hexagon, is readily comprehensible. What does it mean then to study "the nature of symmetry"?

2/
@GWOMaths Mathematicians define a "group", G, as a set of elements {a,b,c, ...} with a binary operation ⊡ and a distinguished element e (the identity of G) satisfying these specific properties:

3/
@GWOMaths For all a, b, c in G
1) Closure: a⊡b is in G.
2) Associativity: (a⊡b)⊡c = a⊡(b⊡c)
3) Identity: e⊡a = a⊡e = a.
4) Inverse: There exists an element a* such that a*⊡a = a⊡a* = e.

4/
@GWOMaths Just as functions on the integers, rationals, or reals are defined as mappings, mathematicians define a *group morphism* μ as a mapping from one group to another that preserves the group structure:

5/
@GWOMaths For groups G = [{a,b,c, ...}, ⊡, e] and H = [{α,β,γ, ...}, ⊠, ε]
then μ: G ⟼ H is a "group morphism" if for all elements of G:
μ(a⊡b) = μ(a)⊠μ(b). Note that for all a:
μ(a)⊠ε = μ(a) = μ(a⊡e) = μ(a)⊠μ(e)
and hence μ(e)=ε; Similarly it can be shown that
μ(a*) = μ(a)*.
@GWOMaths Thus the definition of such a *group morphism* preserves the group structure. When such a *morphism* is both *onto* (ie every element of H is mapped to by one or more elements of G) and *one-to-one* (only one element of G maps to each element in H) it is termed an *isomorphism*.
@GWOMaths For mathematical purposes, when there exists an *isomorphism* between two groups G = [{a,b,c, ...}, ⊡, e] and H = [{α,β,γ, ...}, ⊠, ε] then G and H are termed *isomorphic*, or *the same up to isomorphism*.
@GWOMaths Now all the finite groups can be classified in terms of various internal structures, first collecting those which are *the same up to isomorphism* and then collecting families with similar internal structure.
@GWOMaths When all the families of groups - Cyclic, Alternating, and assorted Lie Group Types - have been defined, there are remaining 26 groups that don't fit anywhere: the *sporadic groups*.
@GWOMaths Of these 26 *sporadic groups*, two stand out from the others in terms of their size:

- the *Baby Monster*, *B*, of size
2⁴¹ ⋅ 3¹³ ⋅ 5⁶ ⋅ 7² ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 31 ⋅ 47; and
@GWOMaths - the *(Fischer–Griess) Monster), *M*, of size
2⁴⁶ ⋅ 3²⁰ ⋅ 5⁹ ⋅ 7⁶ ⋅ 11² ⋅ 13³ ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 41 ⋅ 47 ⋅ 59 ⋅ 71.

Counting up the number of distinct primes in that last number gives us 15.
@GWOMaths Therefore today's answer is that:

The number of distinct prime factors
in the size, n, of the *Monster Group* M
is

15.
@GWOMaths @threadreaderapp unroll

More from Maths

OK, I may be guilty of a DoS attack attempt on mathematicians' brains here, so lest anyone waste too much precious brain time decoding this deliberately cryptic statement, let me do it for you. •1/15


First, as some asked, it is to be parenthesized as: “∀x.∀y.((∀z.((z∈x) ⇒ (((∀t.((t∈x) ⇒ ((t∈z) ⇒ (t∈y))))) ⇒ (z∈y)))) ⇒ (∀z.((z∈x) ⇒ (z∈y))))” (the convention is that ‘⇒’ is right-associative: “P⇒Q⇒R” means “P⇒(Q⇒R)”), but this doesn't clarify much. •2/15

Maybe we can make it a tad less abstruse by using guarded quantifiers (“∀u∈x.(…)” stands for “∀u.((u∈x)⇒(…))”): it is then “∀x.∀y.((∀z∈x.(((∀t∈x.((t∈z) ⇒ (t∈y)))) ⇒ (z∈y))) ⇒ (∀z∈x.(z∈y)))”. •3/15

Maybe a tad clearer again by writing “P(u)” for “u∈y” and leaving out the quantifier on y, viꝫ: “∀x.((∀z∈x.(((∀t∈x.((t∈z) ⇒ P(t)))) ⇒ P(z))) ⇒ (∀z∈x.P(z)))” [✯]. Now it appears as an induction principle: namely, … •4/15

… “in order to prove P(z) for all z∈x, we can assume, when proving P(z), that P(t) is already known for all t∈z∩x” (n.b.: “(∀z.(Q(z)⇒P(z)))⇒(∀z.P(z))” can be read “in order to prove P(z) for all z, we can assume Q(z) known when proving P(z)”). •5/15
In light of my tweet thread about the category of finite sets and commutative monoids (https://t.co/jnY0wZZbxq), I thought I might try to say what the analogue is for braided monoidal things (although much of this is still somewhat hypothetical).


It's also just kind of a cool combinatorial structure! I've been talking to @CreeepyJoe about this lately, as well as @grassmannian.

The first thing you have to know is that, in a braided monoidal category you can still have commutative monoids. Since a braided monoidal category C has a "twist" map for every object β(x):x⊗x→x⊗x, if x is a monoid you can ask for the following diagram to commute:


Remember that being symmetric monoidal just means that if you take the twist map above and do it twice, you get the identity map, but braided monoidal doesn't mean that. But it's okay! You can still define commutative monoids here.

But so anyway, we can talk about commutative monoids in braided monoidal categories.

You May Also Like

दधीचि ऋषि को मनाही थी कि वह अश्विनी कुमारों को किसी भी अवस्था में ब्रह्मविद्या का उपदेश नहीं दें। ये आदेश देवराज इन्द्र का था।वह नहीं चाहते थे कि उनके सिंहासन को प्रत्यक्ष या परोक्ष रुप से कोई भी खतरा हो।मगर जब अश्विनी कुमारों ने सहृदय प्रार्थना की तो महर्षि सहर्ष मान गए।


और उन्होनें ब्रह्मविद्या का ज्ञान अश्विनि कुमारों को दे दिया। गुप्तचरों के माध्यम से जब खबर इन्द्रदेव तक पहुंची तो वे क्रोध में खड़ग ले कर गए और महर्षि दधीचि का सर धड़ से अलग कर दिया।मगर अश्विनी कुमार भी कहां चुप बैठने वाले थे।उन्होने तुरंत एक अश्व का सिर महर्षि के धड़ पे...


...प्रत्यारोपित कर उन्हें जीवित रख लिया।उस दिन के पश्चात महर्षि दधीचि अश्वशिरा भी कहलाए जाने लगे।अब आगे सुनिये की किस प्रकार महर्षि दधीचि का सर काटने वाले इन्द्र कैसे अपनी रक्षा हेतु उनके आगे गिड़गिड़ाए ।

एक बार देवराज इन्द्र अपनी सभा में बैठे थे, तो उन्हे खुद पर अभिमान हो आया।


वे सोचने लगे कि हम तीनों लोकों के स्वामी हैं। ब्राह्मण हमें यज्ञ में आहुति देते हैं और हमारी उपासना करते हैं। फिर हम सामान्य ब्राह्मण बृहस्पति से क्यों डरते हैं ?उनके आने पर क्यों खड़े हो जाते हैं?वे तो हमारी जीविका से पलते हैं। देवर्षि बृहस्पति देवताओं के गुरु थे।

अभिमान के कारण ऋषि बृहस्पति के पधारने पर न तो इन्द्र ही खड़े हुए और न ही अन्य देवों को खड़े होने दिया।देवगुरु बृहस्पति इन्द्र का ये कठोर दुर्व्यवहार देख कर चुप चाप वहां से लौट गए।कुछ देर पश्चात जब देवराज का मद उतरा तो उन्हे अपनी गलती का एहसास हुआ।