1/🧵 Good #DataScience advice that breaks pretty much every rule you learned in class... a thread. (+full blog post linked)

English version: https://t.co/dG4l6vPFBT
Spanish version: https://t.co/gFAjPQ5clS

#AI #MachineLearning #Statistics #RStats

2/🧵 Allow your approach to be sloppy at first and burn some of your initial time, energy, and data on informing a good direction later. That's right, you're supposed to start sloppily ON PURPOSE.
3/🧵 Have a phase where the only result you’re after is *an idea of how to design your ultimate approach better.*
4/🧵 In other words, start with a pilot phase where the objective isn't finding answers, it's finding a good approach to finding answers.
5/🧵 That means you're encouraged (ENCOURAGED!) to start with everything your stats classes told you not to do:
6/🧵 Low-quality data: use small sample sizes, synthetic data, and non-randomly sampled data to gain insights about the data collection process itself.
7/🧵 Rough-and-dirty models: seek an understanding of what the payoff from minimum effort looks like. Start with bad algorithms which you know are only going to give you a benchmark, not your best solution.
8/🧵 Multiple comparisons: instead of picking a single hypothesis test, feel free to throw the kitchen sink at your data to discover signals worth basing your final approach on. Add deadlines and MVP milestones to avoid the trap of infinite polishing, poking, and prodding.
9/🧵 If the statistician in you isn’t screaming yet, I admire your sangfroid. This advice breaks pretty much every rule you learned in class. So why am I endorsing these “bad behaviors”?
10/🧵 So why am I endorsing these “bad behaviors”? Because this is the pilot phase. I’m all about following the standard advice later, but this early phase has different rules.
11/🧵 The important thing is to avoid rookie mistakes by remembering these 2 crucial principles:
12/🧵 Principle 1: Don’t take any findings from the early phase too seriously.
13/🧵 Principle 2: Always collect a clean new dataset when you’re ready for the final version.

For more info: https://t.co/Ue332SMjy1
14/🧵 You’re using your initial iterative exploratory efforts to inform your eventual approach (which you’ll take just as seriously as the most studious statistician would). The trick is to use the best of exploratory nimbleness to inform what’s worth considering along the way.
15/🧵 If you’re used to the rigidity of traditional statistical inference, it’s time to rediscover the benefits of pilot studies in science and find ways to embed the equivalent into your data science projects.
16/🧵 The key thing to understand about this advice is that

- finding good questions
- finding good answers
- finding good approaches going from one to the other

are all different objectives that require different approaches. Sometimes there's homework to do before answers...

More from Machine learning

Really enjoyed digging into recent innovations in the football analytics industry.

>10 hours of interviews for this w/ a dozen or so of top firms in the game. Really grateful to everyone who gave up time & insights, even those that didnt make final cut 🙇‍♂️ https://t.co/9YOSrl8TdN


For avoidance of doubt, leading tracking analytics firms are now well beyond voronoi diagrams, using more granular measures to assess control and value of space.

This @JaviOnData & @LukeBornn paper from 2018 referenced in the piece demonstrates one method
https://t.co/Hx8XTUMpJ5


Bit of this that I nerded out on the most is "ghosting" — technique used by @counterattack9 & co @stats_insights, among others.

Deep learning models predict how specific players — operating w/in specific setups — will move & execute actions. A paper here: https://t.co/9qrKvJ70EN


So many use-cases:
1/ Quickly & automatically spot situations where opponent's defence is abnormally vulnerable. Drill those to death in training.
2/ Swap target player B in for current player A, and simulate. How does target player strengthen/weaken team? In specific situations?

You May Also Like

Хајде да направимо мали осврт на случај Мика Алексић .

Алексић је жртва енглеске освете преко Оливере Иванчић .
Мика је одбио да снима филм о блаћењу Срба и мењању историје Срба , иза целокупног пројекта стоји дипломатски кор Британаца у Београду и Оливера Иванчић


Оливера Илинчић је иначе мајка једне од његових ученица .
Која је претила да ће се осветити .

Мика се налази у притвору због наводних оптужби глумице Милене Радуловић да ју је наводно силовао човек од 70 година , са три бајпаса и извађеном простатом пре пет година

Иста персона је и обезбедила финансије за филм преко Беча а филм је требао да се бави животом Десанке Максимовић .
А сетите се и ко је иницирао да се Десанка Максимовић избаци из уџбеника и школства у Србији .

И тако уместо романсиране верзије Десанке Максимовић утицај Британаца

У Србији стави на пиједестал и да се Британци у Србији позитивно афирмишу како би се на тај начин усмерила будућност али и мењао ток историје .
Зато Мика са гнушањем и поносно одбија да снима такав филм тада и почиње хајка и претње која потиче из британских дипломатских кругова

Најгоре од свега што је то Мика Алексић изговорио у присуству високих дипломатских представника , а одговор је био да се све неће на томе завршити и да ће га то скупо коштати .
Нашта им је Мика рекао да је он свој живот проживео и да могу да му раде шта хоће и силно их извређао