BUZZ CHRONICLES > TECH
Saved by @zmbnski
See On Twitter

Twitter Thread by Patrick McKenzie

o Patrick McKenzie y
@patioll

A thread on HN about bad code in legacy projects both makes me think how little
we've learned as a discipline over the years and, honestly, how little credit we give
ourselves for some pretty major

Fun going down this list and thinking: "Hmm, plausible at a well-run modern software shop", "Hmm, possible, but requires
implausible tradeoffs", "Literally disallowed by languages", and "If you were to attempt doing that our test suite wouldn't let
you merge."

I think we as an industry celebrate (not quite the right word) failure too much and don't celebrate success nearly enough.
There is no DailyWTF for competent execution, word of which generally stays pretty local to the source while incompetence
passes into legend.

Alrighty let me try to thread the needle on being the change | want to see in the world while not giving away anything that will
get me in trouble:

Ruby has wonderful developer ergonomics. Typed languages are easier for machines to guarantee the correctness of. We
built a type checker for Ruby (and | believe it is slated for OSS release sometime).

c.f. https://t.co/S5XIDxFUrH

We have an infrastructure at work which allows one to specify an invariant about not just code but e.g. objects or the
environment and then have a range of response options if that invariant changes.

(Parallel evolution of code: | wrote a less-well-specified one at last gig.)

Git, continuous integration, and workflow-driven mandatory code reviews are all younger that the Joel Test, at least insofar
as them being common features of median-sophistication engineering shops.

It is not astonishing to start a new engineering job in 2018 and have a developer environment which reasonably
approximates the production environment available on one's laptop or tested, repeatable ways to spin up and spin down a
new server w/o "build it by hand.”


https://buzzchronicles.com
https://buzzchronicles.com/b/tech
https://buzzchronicles.com/zmbnski
https://twitter.com/patio11/status/1062626170611486720
https://twitter.com/patio11
https://twitter.com/patio11
https://twitter.com/patio11
https://t.co/S5XIDxFUrH

It is highly likely that a service which is hard down learns of that fact faster than Twitter can apprise them of it, assuming that
service is operated in a professional fashion.

At risk of stating the obvious: this is a relatively novel development.

The industry has decisively adopted:

* a single, common encoding for almost all human languages
* a single, parseable, human-readable data interchange format
* a default protocol for information transport

You can round to "Any new application talking to any application written by a competent team in last 10 years will be talking
to it over an encrypted link which neither side had to think deeply about because the technology is reliable, ubiquitous, and
uncontroversially legal."

While it's not literally the case that you could replicate an entire modern software company's deployment for zero dollars in
software licenses, that can almost round to true, due to the pervasive use of OSS.

This is very good for learners.

You can get a full development environment capable of doing Hello World spun up in your well-supported language of
choice in, almost certainly, less than ten minutes of effort (contingent on you using a Mac, sadly).

The majority case for libraries, APIs, and file formats of interest to you will overwhelmingly be "If you Google the thing you
want you get exactly what you need very, very quickly."



	A thread on HN about bad code in legacy projects both makes me think how little we've learned as a discipline over the years and, honestly, how little credit we give ourselves for some pretty major

