BUZZ CHRONICLES > MACHINE LEARNING
Saved by @CodyyyGardner
See On Twitter

Twitter Thread by Jan Giacomelli

Jan Giacomelli ’
@jangiacomelli
m Python decorators

What are they? How do you use them?

m Let's find out m

1mm Decorator is a function or a class that wraps another function or class modifying its behavior.
So how does that work?

The first thing to know is that everything in Python is an object - functions too

def my_function():
print('Hi")

print(my_function)

https://buzzchronicles.com
https://buzzchronicles.com/b/machine+learning
https://buzzchronicles.com/CodyyyGardner
https://twitter.com/jangiacomelli/status/1347087272718450690
https://twitter.com/jangiacomelli
https://twitter.com/jangiacomelli
https://twitter.com/jangiacomelli

2mm That means they can be passed to another function as an argument or returned from a function

Functions that take other functions as an argument are called higher-order functions

def send_email_ses(email_message):
print(f'Send email using AWS SES: {email_message}"')

def send_email_sendgrid(email_message):
print(f'Send email using SendGrid: {email_message}')

def send _email(send email function):
email_message = 'Hi'
send_email_function(email_message)

send_email(send_email_ses)

send_email(send_email_sendgrid)

3mm In Python, you can define a function inside other function - such functions are called inner functions

def get_send_email_function(email_service):
def send_email_ses(email_message):
print(f'Send email using AWS SES: {email_message}')

def send_email_sendgrid(email_message):
print(f'Send email using SendGrid: {email_message}')

def send_email_dummy(email_message):
print(f'I just pretend that I will send email: {email_messagel}')

if emall service == 'SES':
return send_email _ses
elif email_service == 'SENDGRID':
return send_email_sendgrid
else:
return send_email_dummy

send_email = get_send_email_function('SES"')
send_email('Hi')

4mm To create a decorator you just need to apply all of that together
log_enter_leave is a decorator.
my_function is the function.

To alter my_function's behavior we reassign it applying log_enter_leave decorator.

def log_enter_leave(func):
def wrapper(*args, **kwargs):
print('Enter function')
result = func(*args, **kwargs)
print('Leave function')
return result

return wrapper

def my_function():
print('Hi')

my_function = log_enter_leave(my_function)
my_function()

log_enter_leave is a decorator - it accepts any function object as an argument.
We want to call decorated function *func* the same way as undecorated *funck.

To do that we define inner function *wrapper*.

It accepts any arguments and keyword arguments.

wrapper alters behavior of *func*.

It prints before and after *func* is executed.

log_enter_leave just returns *wrapper* function object to the caller.

Because functions are objects we can store them in variables.

So to alter *my_function* we reassign decorated *my_function* to *my_function* - my_function =
log_enter_leave(my_function).

When we do that *wrapper* function is returned which now looks like this:

def wrapper(*args, **kwargs):
print('Enter function')
result = my_function(*args, **kwargs)
print('Leave function')
return result

So now when we call:

my_function()

We see this printed out:
Enter function

H1i

Leave function

S5mm To simplify usage of decorators Python offers us syntactic sugar

A "pie-decorator" syntax using @

@decorator name

6mm The only problem here is that my_function now identify as the wrapper function

To solve that we just need to use wraps from functools

https://twitter.com/
https://twitter.com/decorator_name

def log_enter_leave(func):
def wrapper(*args, **kwargs):
print('Enter function')
result = func(*args, **kwargs)
print('Leave function')
return result

return wrapper

@log_enter_leave
my_function():
print('Hi')

print(my_function.__name__)

from functools import wraps

def log_enter_leave(func):
@wraps(func)
def wrapper(*args, **kwargs):
print('Enter function')
result = func(*args, **kwargs)
print(‘'Leave function')
return result

return wra PREr

@log_enter_leave
def my_function():
print('Hi'")

print(my_function.__name__)

7mm You can decorate classes too.

For example, you can dataclass decorator on your class to automatically generate its __init __and __repr__ methods

from dataclasses import dataclass

@dataclass

class User:
id: int
name: str

8mm You can also use a class as a decorator

Decorator class needs methods:
- init__
- call__ (it makes class callable)

import functools

class CallCounter:
def __1init__(self, function):
functools.update_ r(self, function)
self.function = f
self.number_calls

=0
__call__(self, *args, **kwa

self.number_calls += 1

print(f"{self.function.__name__} was called {self.number_calls} times."
return self.function(*args, **kwargs)

@CallCounter
def my_function():
print("Hi!")

What's going one here?
@CallCounter actually does this:

my_function = CallCounter(my_function)

So my function is now instance of CallCounter class.

It must be callable to be able to call it the same way as my_function.

When instance of CallCounter is called - __call__ is executed ->
number_calls is incremented and result from decorated function is returned.
Every time we call my_function the same instance of CallCounter is called.
That's why number_calls is bigger for every consecutive call.

my_function()

my_function()

O9mm For example, decorators are used for registering view functions to the Flask application

from flask import Flask, Response

app = Flask(__name__)

@app.route('/get-csv/"')
def users_csv():
csv_string = 'name,surname\nJan,Gilacomelli’

response = Response(
csv_string,
mimetype="'text/csv',
headers={
"Content-disposition”: "attachment; filename=users.csv"}

return response

1mmOmm Read more:

https://t.co/eBMh1Gv0OxZ

https://t.co/2YdA2ZIQoV

https://t.co/Wb0jSjmzIc

1mm 1mm Script with all of the examples:

https://t.co/TwlgrbNOnN

https://t.co/eBMh1Gv0xZ
https://t.co/2YdA2ZIQoV
https://t.co/Wb0jSjmzlc
https://t.co/Tw1qrbN0nN

	🤔 Python decoratorsWhat are they? How do you use them?🧵 Let's find out 👇

