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I’'m excited to share our new paper on HyperTransformers, a novel architecture for

few-shot learning able to generate the weights of a CNN directly from a given

support set. mm

m: https://t.co/vem67G6P6t with Andrey Zhmoginov and Mark Sandler.
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2) We train a transformer model to “convert” a few-shot task description into a small CNN network specialized in solving it on

new images.

-
f(,0)

....................................

Query Set


https://buzzchronicles.com
https://buzzchronicles.com/b/all
https://buzzchronicles.com/ankitsrihbti
https://twitter.com/mvladymyrov/status/1482125389891715074
https://twitter.com/mvladymyrov
https://twitter.com/mvladymyrov
https://twitter.com/mvladymyrov
https://t.co/vcm67G6P6t

Transformer 92

-

Generated Layer 2

Activations

[ e (e
'Zl Z2 2:3 h‘{bi

o 1 i T = T e T P ———

Extractor
fi

Generated Layer 1

Shared Features

s(z1)| [s(z2)||s(z3) hy,
S, -— i) T2 I3 C1 Co C3

Figure 1: A diagram of our model showing the generation of two CNN layers: transformer-based
weight generators receive global shared features sy, (-) and local features Ay, (-) along with corre-
sponding labels c¢;, and produce CNN layer weights (6, and 63). After being generated, the CNN
model is used to compute the loss on the query set. The gradients of this loss are then used to adjust
the weights of the entire weight generation model (¢, ¢;, transformer weights).

3) This effectively decouples a high-capacity transformer generator from a much smaller inference model. It is different from
most of the existing methods, e.g. MAML where the generator and the executing model share the same architecture.

4) CNN weights are generated layer-by-layer from a combination of layer embedding (features from the last generated
layer), and image w/ class embeddings (features directly from the data). The final weights are extracted from output of

self-attention (similar to [CLS] tokens).
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Figure 2: Structure of the tokens passed to and received from a transformer model. Both labeled
and unlabeled (optional) samples can be passed to the transformer as inputs. Empty output tokens
indicate ignored outputs.



5) What is cool is that we can also add unlabeled samples from the support set into the mix, effectively allowing for
semi-supervised few-shot learning!

6) HyperTransformers are comparable in performance to many competing methods on minillmageNet and tieredimageNet
datasets.

Table 2: Comparison of MINIIMAGENET and TIEREDIMAGENET 1-shot (1-S) and 5-shot (5-S)
5-way results for HT (underlined) and other widely known methods with a 64-64-64-64 model
including (Tian et al., 2020): Matching Networks (Vinyals et al., 2016), IMP (Allen et al., 2019),
Prototypical Networks (Snell et al., 2017), TAML (Jamal & Qi, 2019), SAML (Hao et al., 2019),
GCR (Li et al., 2019a), KTN (Peng et al., 2019), PARN (Wu et al., 2019), Predicting Parameters
from Activations (Qiao et al., 2018), Relation Net (Sung et al., 2018), MELR (Fei et al., 2021). We
also include results for CNNs with fewer channels (“-32” for 32-channel models, etc.).

MINIIMAGENET TIEREDIMAGENET
Method | 1-S 5-S Method | 1-S 5-S Method 1-S 5-S
HT 54.1 68.5 || HT-48 55.1 68.1 || HT-32 52.7 69.9
MN 43.6 55.3 || SAML 52.2 66.5 || MAML-32 | 51.7 70.3
IMP 49.2 64.7 || GCR 53.2 723 || HT 56.1 73.3
PN 49.4 68.2 || KTN 54.6 T71.2 || PN 53.3 T2.7
MELR 55.4 72.3 || PARN 55.2 71.6 | MELR 564 73.2
TAML 51.8 66.1 || PPA 54.5 67.9 | RN 54.5 713

7) But our method especially shines for the case of small target CNN architectures, where the large capacity of the
transformer model is the most useful and noticeable. For the 8-channels model we are seeing 5-10% improvement over
MAML++!

Table 1: Comparison of HT with MAML++ on models of different sizes and different datasets:
(a) 20-way OMNIGLOT and (b) 5-way MINIIMAGENET. Results for MAML++ were obtained
using GitHub code accompanying Antoniou et al. (2019), those marked with { are from Antoniou
et al. (2019). HT outperforms MAML++ on many few-shot tasks. Accuracy confidence intervals:
OMNIGLOT — between 0.1% and 0.3%, MINIIMAGENET — between 0.2% and 0.5%.

Approach 1-shot (channels) 5-shot (channels)

P 8 16 32 48 64 8 16 32 48 64
OMNIGLOT:
-MAML++ | 81.4 886 956 958 9777 | 832 949 986 988 99.31
-HT 87.2 937 955 957 962 | 947 980 986 988 988
MINI:
-MAML++ | 439 46.6 49.4 5221 = 59.0 646 66.8 68.3" =
-HT 455 502 53.8 55.1 - 58.5 63.8 67.1 68.1 -

8) As it turns out, for small target models, where every neuron matters, it is important to generate the whole network from a
given support set. For larger target models even generating only the last logits layers appears to be sufficient.
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Figure 3: (Left) Test accuracies for the generated 4-, 6- and 8-channel CNN models on the 5-shot-
20-way OMNIGLOT task. Models with only the last logits layer generated (red) are characterized
by lower test accuracies compared to the models with some or all convolutional layers also being
generated (blue, green). Similar plot for TIEREDIMAGENET can be found in Appendix (Fig. 13).
(Right) 5-shot-20-way OMNIGLOT training/test accuracies (separate run) as a function of the CNN
model complexity: only the final logits layer being generated (logits), all layers being generated (all),
training the model on all available samples for a random set of few classes (oracle). A model that
generates CNN weights by memorizing all samples (being able to determine their classes) and also
memorizing optimal trained weights for any selection of classes would reach the oracle accuracy,
but would not generalize.

9) We are really excited about the direction of using Transformers to guide the construction and performance of smaller
specialized models e.g. in low-power settings. This has a lot of applications in the areas where high-performance compact

personalized networks are being used.
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