BUZZ CHRONICLES > ALL
Saved by @nandanarunesh
See On Twitter

Twitter Thread by Goku Mohandas

' Goku Mohandas
ﬁ @GokuMohandas y

All the @madewithml machine learning fundamentals & MLOps lessons are

released!

m Project-based

m Intuition & application (code)
m 26K+ GitHub mm
(m 30K+ community

m 47 lessons, 100% open-source

https://t.co/XIhD3wI1DA

m Thread on details & lesson highlights m

Who is this course for?

- m Software engineers / Data scientists looking to learn how to responsibly create ML systems.
- m College grads looking to learn the practical skills they'll need for the industry.
- m Product Managers who want to develop a technical foundation.

We start with lessons on the fundamentals of ML through intuitive explanations, clean code and visualizations.

m Foundations

- Python (variables, functions, classes, decorators)
- NumPy (numerical analysis)

- Pandas (data analysis)

- PyTorch (operations, gradients)

https://buzzchronicles.com
https://buzzchronicles.com/b/all
https://buzzchronicles.com/nandanarunesh
https://twitter.com/GokuMohandas/status/1409487532882989058
https://twitter.com/GokuMohandas
https://twitter.com/GokuMohandas
https://twitter.com/GokuMohandas
https://t.co/XIhD3wl1DA

function name —. "
uncucname input parameter(s)

v variable
4 ' function z :
H t bl
def ﬁgg_tWO(X) H s score = 0 g ’ input variable
sperations Inrz:rease X by 2. new_score = add_two(x=score)
X 4= ' ; \
return x docstring output variable input parameter

4

output(s)

1 # Define the function 1 # Use the function
2 def add_two(x): 2 score = @
3 """Increase x by 2.""" 3 new_score = add_two(x=score)
4 X += 2 4 print (new_score)
5 return x
2

Then we dive into implementing basic ML algorithms 1m from scratch then 2m in PyTorch. Starting from simple models -
complex models.

m Modeling

- Linear Regression

- Logistic Regression

- Neural Networks

- Data Quality (mm very important)
- Utilities (for loading and training)

Step 4: Calculate the gradient of loss J(#) w.r.t to the model weights.

1 . 1
J(6) = N ?Z(y-: —§:i)° = N Z(ys. - X;W)?
aJ 2 2 .
T aw - N : (yi — XiW)X; = N Z(’yr — §i) X
oJ 2

2
—_— Erw— ?'—Xi' l=—— 5—%‘1
5 N (y W) NE}_Z(y Vi)

i

1 # Backpropagation
2 dW = -(2/N) * np.sum((y_train - y_pred) * X_train)
3 db = -(2/N) * np.sum((y_train - y_pred) * 1)

We wrap up the fundamentals by implementing deep learning algorithms in PyTorch.

m Deep Learning
- CNNs

- Embeddings

- RNNs

- Transformers

m We motivate the need for specific architectures and additional complexity as we implement each method.

output
channels =
filters =

50 4

F 9
L J

kernel size

O
A\
* 3

num_filters = 50

The first MLOps lessons are on the Product development and iteration cycle.

m Product

- Identify the core objective.

- Design a solution with constraints.

- Evaluation strategies that avoid bias.

input
channels =
vocab size

- Iterate via feedback and motivate adding complexity.

Wo-F+2P . 8-3+20)

S 1
Hy—F+2P _ 1-1+2(0)
S TE 1
D,=D,

Variable Description

w

H

D

width of each input = 8

height of each input = 1

depth (# of channels)

filter size = 3

padding = 0

stride = 1

b

1=6

§ Product :‘-

Model fitter ® Problem solver _:' lmnm.m

knows which set of inputs
and outputs are worth
mapping.

naively maps a set of
inputs to outputs.

reassess

obsesses on methods focuses on application
(SOTA, single metric, (objective, constraints,
etc.) evaluation, etc.)

Evaluation

deploy with

monitoring
fitting methods are foundational mental) '
ephemeral. models are enduring. : Iteration

—
[}
[0}
o
o
o]
O
A~

Goku Mohandas

Next we dive into exploring and transforming our data.

m Data

- Labeling (data worth modeling, active learning)
- Preprocessing (prepare + transform)

- Exploration (answering questions)

- Splitting (multi-label classification)

- Augmentation (nlpaug, transformation functions)

1 # Load tags

2 url = "https://raw.githubusercontent.com/GokuMohandas/MadeWithML/main/dataset:
3 tags = json.loads(urlopen(url).read())

4 tags_dict = {}

5 for item in tags:

6 key = item.pop(“tag")
tags_dict[key] = item
8 print (f"{len(tags_dict)} tags")

~J

1 from snorkel.labeling import labeling_function
2
3 @labeling_function()
4 def contains_tensorflow(text):
5 condition = any(tag in text.lower() for tag in ("tensorflow", "tf"))
6 return "tensorflow" if condition else None
m Modeling

- Baselines (simple - complex)
- Evaluation (overall, slices, generated)

- Experiment tracking (tracking, viewing and loading)
- Optimization (sampling + pruning)

m These aren't just tutorial code snippets. We implement everything with clean and tested code.

Raw inputs One-hot encoded

N, max_seq o] (RN Feature maps

vocab_size Filtars sride = 1, pacding = ‘SAME
BE B e o
. e Wl
N N| o o o . m:.. see g 5 8
i - Convolution . . HIRCT-
tokenization + P . . o e : :
one-hot —
o (el e -9, W
embedding_dim JEN—
T

max_seq_len man_seq_len num_classes

input size =9 this value in the input will be drepped -
fil . ub since this combination of filter_size and
VUG stride cannot process it without padding M -0.2
stride=3 0
.) = 01
w, ~HANEEEEEEE
padding s 00
L] =
| | A
H—J =) -01
stride = 3 rr:;
R -0.2
padding padding E
SAME a =03
padding o
[|] -0.4
L | @

Next, we move our work from notebooks to scripts.

m Scripting

- Organization

- Packaging (setup + virtualenv)

- Documentation (auto)

- Logging (logger, handler, formatter)
- Styling (black, isort, flake8)

- Makefile

m All of this makes for a very calm developing experience.

new <UNK> stock market

def pad_sequences(
sequences: np.ndarray, max_seq_len: int = @
) —> np.ndarray:
"nhZero pad sequences to a specified "max_seq_len’
or to the length of the largest sequence in 'sequences’.

Usage:

" python

Pad inputs

seq = np.array([f1, 2, 3], [1, 2]], dtype=object)
padded_seq = pad_sequences(seq, max_seq_len=5)
print (padded_seq)

g e e R o

pad_sequences(sequences, max_seq_len=8)

(1.2 808 B3] e 2

Note:
Input ‘sequences' must be 2D.

Args:
sequences (np.ndarray): 20 array of data..
max_seq_len (int, optional): Length to pad.

Raises:
ValueError: Input sequences are not two-dimensional.

Returns:
An array with the zero padded seguences.

Now we're ready to wrap our application via various interfaces.

m Interfaces

- Command-line (CLI)
- RESTful API with FastAPI (design, schemas, validation)

Zero pad sequences to a specified max_seq_len or to the length of
the largest sequence in sequences .

Usage:

Pad inputs

seq = np.array([[1, 2, 3], [1, 2]], dtype=object)
padded_seq = pad_sequences(sequences=seq, max_seq_len=
print (padded_seq)

[[1. 2. 3. 8. 8.]
[1. 2. 8.8.86.]]
Note
Input sequences must be 2D. Check out this implemention for a generalized approach.
Parameters:
Nama Type Description Default
sequences ndarray 20 array of data 1o be padded, required
max_seq.len int Length to pad sequences to. Defaults 1o 0.

Exceptions:

m These interfaces allow us to quickly execute both internal (training, testing, etc.) and external (inference) tasks.

/predict Predict
Predict tags for a list of texts using the best run.

Parameters Cancel

No parameters

Request body """ [applicationfjson v I
“texts": |
"text": "Transfer learning with transformers for self-supervised
learning.”

{
“text”: "Generative adversarial networks in both PyTorch and
TensorFlow. "
¥
1
}

Responses

Code

200

Details

Response body

[2 _ Downioad

tive adversarial

length: 688
ype: application/jsen

t
date: Tue,30 Mar 2021 18:21:34 GMT
server: wvicorm

Throughout development, we've been testing not only our code but also our data and models.

m Testing
- Test types, coverage, best practices

- Pytest fixtures, markers, parametrize
- Test data w/ Great Expectations

- Test models via slicing functions

- Behavioral tests

X pytest —cov tagifai ——cov app —cov-report html
test session starts =========
, pytest-6.0.2, py-1.10.0, pluggy-0.13.1
rootdir: /Users/goku/Documents/madewithml/applied-ml, configfile: pyproject.toml, testpaths: tests
plugins: cov-2.10.1
collected 68 items

tests/app/test_api.py II
tests/app/test_cli.py

tests/tagifai/test_config.py

tests/tagifai/test_data.py

tests/tagifai/test_eval.py

tests/tagifai/test_models.py

tests/tagifai/test_train.py

tests/tagifai/test_utils.py

coverage: platform darwin, python 3.7.10-final-0
Coverage HTML written to dir htmlcov

’ 10 wa rnings in 202.52s (B HEH 22} —————————=———=——==—=———=——=—x—xxx

We want to ensure that our work is entirely reproducible by anyone.

mm Reproducibility

- Git basics via workflows (dev, inspect, merge, etc.)
- Pre-commit hooks (+ custom local)

- Versioning code + config + data = models via DVC
- Containerization via Docker

blob storage model registry

#

Q} Git commit n, Tag vXY.Z : :
— .
> + || + = %3 —
code config data model
(pointer) {pointer)
HEAD
HEADA
HEAD”n

Next, we want to be able to showcase our work and enable interaction via @streamlit.

m Dashboard:

- Data: annotation, EDA, preprocessing

- Performance: overall, slices, regressions

- Inference: intermediate & final outputs

- Inspection: labeling (FP), weaknesses (FN)

Annotation
We want to determine what the minimum tag frequency is so that we have enough samples per Preprocessing
tag for training.
Input text
min_tag_freq
25
9 Generation via Autoencoders!
1 100
Most common tags: Tags that just made the cut: Tags that just missed the cut: filters
('natural-language- ('streamlit', 27) ("text-classification’, - o . P
processing', 424) 24) [#8%&0*+, -/ <=>2@\[1"_ " {I}-]
('exploxatory-data-
('computer-vision', 388) analysis', 27) ('linear-regression',
545 lower
('pytoxch', 258) ('graph-clustering', 27)
('graph-convolutional- . | stem
('tensorflow', 213) ('graph-embedding', 26) networks', 23)
i " o ; e Preprocessed text:
('transformexs', 196) ('semi-supervised- i 0 3
('named-entity-
learning', 25) DS < . i
ZECORNLLLON S} 23) generation via autoencoders
("classification', 22)

Then, we wrap all of the CI/CD workflows we've created with @GitHub Actions:

m CI/CD workflows

- Workflow components (events, runners, jobs)

- Testing Actions locally using Act

- Best practices (ex. caching)

- ML Actions (Great Expectations checkpoints, DVC CML)

https://twitter.com/streamlit.
https://twitter.com/GitHub

checkout merge
) 32
main @ ’®
. @ ;
" 7 & %e p
feature, bug, o —
hot fix, etc. commits pull request GitHub Actions cammes; accept PR

workflows

GE checkpoints Pytest
7 I
generated data code coverage
docs on Netlify report

=wecks

sz

Next, we explore the infra needed to deploy & serve ML applications.

m m [nfrastructure:

- Serving (batch, real-time)

- Processing (batch, stream)

- Learning (offline, online)

- Testing (AB, canary, shadow)

- Optimization (prune, quantize, distill)
- Methods (K8s, serverless)

Batch serving

database
features predictions -
to —_— =
e
database
tn features ;- predictionsl
foss=—

« [generate and cache predictions for very fast
inference for users.

- [the model doesn't need to be spun up as it's own
service since it's never used in real-time.

- X predictions can become stale if user develops new
interests that aren't captured by the old data that the
current predictions are based on.

- ¥ input feature space must be finite because we need
to generate all the predictions before they're needed

FIREERRRIRIN O

for real-time.

We ensure the health of our ML system with appropriate monitoring.

discussions, etc.

CML training

\

metrics report, Streamlit
dashboard, etc.

Real-time serving

Model

features
N ——

predictions
e

. can yield more up-to-date predictions which may
can yield a more meaningful user experience, etc.

+ X requires managed microservices to handle request
traffic.

- ¥ requires real-time monitoring since input space in
unbounded. which could yield erroneous predictions.

Note

Besides wrapping our model(s) as separate, scalable microservices,
we can also have a purpose-built model server to host our models.
Model servers, such as MLFlow or RedisAl, provide a common interface
to interact with models for inspection, inference, etc. In fact, modules
like RedisAl can even offer added benefits such as data locality for
super fast inference.

m Monitoring:

- identifying drift (data, target, concept)

- measuring drift on uni/multivariate data via
- reducers (PCA, UAE)

- detectors (chi*2, KS, MMD)

- solutions (not always retraining)

== Combined Test Statistic &
X source | -’D Two-Sample Test(s) ombined Tes stic

Shift Detection

AS

Detecting drift as outlined in Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift

Dimensionality
Reduction

Xitarget |

1 from functools import partial 1 from alibi_detect.cd import MMDDrift
2 from alibi_detect.cd.pytorch import preprocess_drift

1 # Initialize drift detector

. 2 embeddings_mmd_drift_detector = MMDDrift(reference, backend="pytorch”, p_wi
Untrained autoencoder (UAE) reducer

1

2 enc_dim = 32

3 reducer = nn.Sequential(1 # No drift

4 embeddmgs_layer. e 2 no.drift = get_data_tensor(texts=df.text[-260:].to_list())
5 nn.AdaptiveAvgPool2d((1, embedding_dim)), 3 embeddings_mmd_drift_detector.predict(no_drift)
6 nn.Flatten(),

7 L i i

: :: ;;:Z?:{embeddmg_dm, 256), {*data’: {"is_drift': o,

g nnlLinearEZSQ') Snctdim "distance’': ©.80886961822589765625,

e . ' = ‘p_val': 8.2800600011928929,

18) .to{device) .eval() peya

‘threshold': 8.81,

‘distance_threshold': 8.888359015},
‘meta’: {'name’: 'MMDDriftTorch’,

‘detector_type': ‘offline’,

‘data_type': Neone,

‘backend’ : ‘pytorch’}}

Preprocessing with the reducer
preprocess_fn = partial(preprocess_drift, model=reducer, batch_si:

(]

Finally, we connect our DataOps & MLOps workflows in our ML systems.

mm Workflow orchestration w/ @ApacheAirflow
- DAGs

- Scheduler

- Tasks

- Operators
- Runs

m Feature stores w/ @feast dev
- data ingestion

- feature definitions

- historical/online features

https://twitter.com/ApacheAirflow
https://twitter.com/feast_dev

70 @ Rion (Uit

mongoDE

Databases ‘W DataOps workflow

Data warehogse : A |:'| s u/? Cner
Google ﬁ%‘ oy | i 27 5

1% snowflake Spark 23 HOPSWORKS

4% snowflake

" validate_projects —..

extract_data compute_features [cache_to_feature_store
1 validate_tags |—

BashOperator GreatExpectationsOperator PythonOperator

Over the past 7 years, I've worked on ML and product at @Apple, health tech startups and ran my own venture in the
rideshare space. I've worked with brilliant developers and managers and learned how to responsibly develop and iterate on
ML systems across various industries.

| currently work closely with early-stage & mid-sized companies in helping them deliver value with ML while diving into the
best & bespoke practices of this rapidly evolving space. | want to share that knowledge with the rest of the world so we can
accelerate overall progress.

ML is not a separate industry, instead, it's a powerful way of thinking about data. The foundations we've laid out will continue
to hold but the methods and avenues of application will evolve. So these lessons are by no means "complete” and we'll
continue to keep them up-to-date.

Even more exciting content coming later this year, so stay tuned!

- m Among top MLOps repos on GitHub: https://t.co/gsYawqTg6U

- mm A highly recommended resource used by industry: https://t.co/pcMd8jZfo5

- Om 30K+ community members: https://t.co/CswgmDZhCq

https://twitter.com/Apple,
https://t.co/gsYawqTq6U
https://t.co/pcMd8jZfo5
https://t.co/CswgmDZhCq

	All the @madewithml machine learning fundamentals & MLOps lessons are released!- 🛠 Project-based- 💻 Intuition & application (code)- 🏆 26K+ GitHub ⭐️- ❤️ 30K+ community- ✅ 47 lessons, 100% open-sourcehttps://t.co/XIhD3wl1DA🧵 Thread on details & lesson highlights 👇

